Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
J Immunol Methods ; 510: 113328, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1977497

ABSTRACT

Monocytes are highly versatile innate immune cells responsible for pathogen clearance, innate immune coordination, and induction of adaptive immunity. Monocytes can directly and indirectly integrate pathogen-destructive instructions and contribute to disease control via pathogen uptake, presentation, or the release of cytokines. Indirect pathogen-specific instructions are conferred via Fc-receptor signaling and triggered by antibody opsonized material. Given the tremendous variation in polyclonal humoral immunity, defining the specific antibody-responses able to arm monocytes most effectively remains incompletely understood. While monocyte cell line-based assays have been used previously, cell lines may not faithfully recapitulate the full biology of monocytes. Thus, here we describe a multifaceted antigen-specific method for probing antibody-dependent primary monocyte phagocytosis (ADMP) and secondary responses. The assay not only reliably captures phagocytic uptake of immune complexes, but also detects unique changes in surface markers and cytokine secretions profiles, poorly detected by monocytic cell lines. The assay captures divergent polyclonal-monocyte recruiting activity across subjects with varying SARS-CoV-2 disease severity and also revealed biological nuances in Fc-mutant monoclonal antibody activity related to differences in Fc-receptor binding. Thus, the ADMP assay is a flexible assay able to provide key insights into the role of humoral immunity in driving monocyte phenotypic transitions and downstream functions across many diseases.


Subject(s)
COVID-19 , Monocytes , Antibodies, Monoclonal , Antigen-Antibody Complex , Antigens , Cytokines , Humans , Immunoglobulin Fc Fragments , Phagocytosis , SARS-CoV-2
2.
J Immunother Cancer ; 9(10)2021 10.
Article in English | MEDLINE | ID: covidwho-1495513

ABSTRACT

Recipients of chimeric antigen receptor-modified T (CAR-T) cell therapies for B cell malignancies have profound and prolonged immunodeficiencies and are at risk for serious infections, including respiratory virus infections. Vaccination may be important for infection prevention, but there are limited data on vaccine immunogenicity in this population. We conducted a prospective observational study of the humoral immunogenicity of commercially available 2019-2020 inactivated influenza vaccines in adults immediately prior to or while in durable remission after CD19-, CD20-, or B cell maturation antigen-targeted CAR-T-cell therapy, as well as controls. We tested for antibodies to all four vaccine strains using neutralization and hemagglutination inhibition (HAI) assays. Antibody responses were defined as at least fourfold titer increases from baseline. Seroprotection was defined as a HAI titer ≥40. Enrolled CAR-T-cell recipients were vaccinated 14-29 days prior to (n=5) or 13-57 months following therapy (n=13), and the majority had hypogammaglobulinemia and cellular immunodeficiencies prevaccination. Eight non-immunocompromised adults served as controls. Antibody responses to ≥1 vaccine strain occurred in 2 (40%) individuals before CAR-T-cell therapy and in 4 (31%) individuals vaccinated after CAR-T-cell therapy. An additional 1 (20%) and 6 (46%) individuals had at least twofold increases, respectively. One individual vaccinated prior to CAR-T-cell therapy maintained a response for >3 months following therapy. Across all tested vaccine strains, seroprotection was less frequent in CAR-T-cell recipients than in controls. There was evidence of immunogenicity even among individuals with low immunoglobulin, CD19+ B cell, and CD4+ T-cell counts. These data support consideration for vaccination before and after CAR-T-cell therapy for influenza and other relevant pathogens such as SARS-CoV-2, irrespective of hypogammaglobulinemia or B cell aplasia. However, relatively impaired humoral vaccine immunogenicity indicates the need for additional infection-prevention strategies. Larger studies are needed to refine our understanding of potential correlates of vaccine immunogenicity, and durability of immune responses, in CAR-T-cell therapy recipients.


Subject(s)
Cell- and Tissue-Based Therapy/methods , Hemagglutination Inhibition Tests/methods , Immunogenicity, Vaccine/immunology , Influenza, Human/drug therapy , Influenza, Human/immunology , Adolescent , Adult , Aged , Humans , Middle Aged , Prospective Studies , Young Adult
3.
J Clin Virol ; 142: 104916, 2021 09.
Article in English | MEDLINE | ID: covidwho-1313216

ABSTRACT

BACKGROUND: While a growing body of literature describes antibody dynamics in serum, little is known about breast milk antibody titers in the months following SARS-CoV-2 infection. OBJECTIVES: We evaluated the dynamics of the humoral immune response to SARS-CoV-2 in two women who were breastfeeding when infected. We assessed paired breast milk and serum samples for six months post-infection for antibodies specific to the SARS-CoV-2 receptor binding domain (RBD) of the spike protein. RESULTS: Starting at 10 days after symptom onset, IgA antibody levels were persistent over a 6-month time period in human milk. For both mothers, no detectable IgA was found in the samples collected pre-symptom onset. RBD-specific IgG and IgM antibodies in tandem serum collected from the two donors demonstrated stable IgG levels over the six-month time period post-symptom onset. CONCLUSIONS: We found that breastfeeding mothers produced a durable IgA response for up to six months following COVID-19 infection, suggesting an important role for breast milk in protection of infants.


Subject(s)
COVID-19 , Milk, Human , Antibodies, Viral , Breast Feeding , Female , Humans , Infant , SARS-CoV-2
4.
JCI Insight ; 6(6)2021 03 22.
Article in English | MEDLINE | ID: covidwho-1097059

ABSTRACT

Comorbid medical illnesses, such as obesity and diabetes, are associated with more severe COVID-19, hospitalization, and death. However, the role of the immune system in mediating these clinical outcomes has not been determined. We used multiparameter flow cytometry and systems serology to comprehensively profile the functions of T cells and antibodies targeting spike, nucleocapsid, and envelope proteins in a convalescent cohort of COVID-19 subjects who were either hospitalized (n = 20) or not hospitalized (n = 40). To avoid confounding, subjects were matched by age, sex, ethnicity, and date of symptom onset. Surprisingly, we found that the magnitude and functional breadth of virus-specific CD4+ T cell and antibody responses were consistently higher among hospitalized subjects, particularly those with medical comorbidities. However, an integrated analysis identified more coordination between polyfunctional CD4+ T cells and antibodies targeting the S1 domain of spike among subjects who were not hospitalized. These data reveal a functionally diverse and coordinated response between T cells and antibodies targeting SARS-CoV-2, which is reduced in the presence of comorbid illnesses that are known risk factors for severe COVID-19.


Subject(s)
Antibodies, Viral/physiology , CD4-Positive T-Lymphocytes/physiology , COVID-19/virology , Hospitalization , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus , Virion , Adult , Aged , Antibodies, Neutralizing/metabolism , Antibodies, Neutralizing/physiology , Antibodies, Viral/metabolism , CD4-Positive T-Lymphocytes/metabolism , COVID-19/epidemiology , COVID-19/immunology , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/immunology , Comorbidity , Diabetes Mellitus/epidemiology , Diabetes Mellitus/immunology , Female , Humans , Immunity, Humoral , Male , Middle Aged , Nucleocapsid , Severity of Illness Index , Viral Envelope , Viral Proteins , Young Adult
5.
J Infect Dis ; 223(2): 197-205, 2021 02 03.
Article in English | MEDLINE | ID: covidwho-1060937

ABSTRACT

Most individuals infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) develop neutralizing antibodies that target the viral spike protein. In this study, we quantified how levels of these antibodies change in the months after SARS-CoV-2 infection by examining longitudinal samples collected approximately 30-152 days after symptom onset from a prospective cohort of 32 recovered individuals with asymptomatic, mild, or moderate-severe disease. Neutralizing antibody titers declined an average of about 4-fold from 1 to 4 months after symptom onset. This decline in neutralizing antibody titers was accompanied by a decline in total antibodies capable of binding the viral spike protein or its receptor-binding domain. Importantly, our data are consistent with the expected early immune response to viral infection, where an initial peak in antibody levels is followed by a decline to a lower plateau. Additional studies of long-lived B cells and antibody titers over longer time frames are necessary to determine the durability of immunity to SARS-CoV-2.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Adult , Aged , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , COVID-19/blood , COVID-19/virology , Female , Humans , Male , Middle Aged , Prospective Studies , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/immunology , Time Factors , Young Adult
6.
medRxiv ; 2020 Nov 30.
Article in English | MEDLINE | ID: covidwho-955709

ABSTRACT

Comorbid medical illnesses, such as obesity and diabetes, are associated with more severe COVID-19, hospitalization, and death. However, the role of the immune system in mediating these clinical outcomes has not been determined. We used multi-parameter flow cytometry and systems serology to comprehensively profile the functions of T cells and antibodies targeting spike, nucleocapsid, and envelope proteins in a convalescent cohort of COVID-19 subjects who were either hospitalized (n=20) or not hospitalized (n=40). To avoid confounding, subjects were matched by age, sex, ethnicity, and date of symptom onset. Surprisingly, we found that the magnitude and functional breadth of virus-specific CD4 T cell and antibody responses were consistently higher among hospitalized subjects, particularly those with medical comorbidities. However, an integrated analysis identified more coordination between polyfunctional CD4 T-cells and antibodies targeting the S1 domain of spike among subjects that were not hospitalized. These data reveal a functionally diverse and coordinated response between T cells and antibodies targeting SARS-CoV-2 which is reduced in the presence of comorbid illnesses that are known risk factors for severe COVID-19. Our data suggest that isolated measurements of the magnitudes of spike-specific immune responses are likely insufficient to anticipate vaccine efficacy in high-risk populations.

7.
Immunity ; 53(3): 524-532.e4, 2020 09 15.
Article in English | MEDLINE | ID: covidwho-709168

ABSTRACT

As SARS-CoV-2 infections and death counts continue to rise, it remains unclear why some individuals recover from infection, whereas others rapidly progress and die. Although the immunological mechanisms that underlie different clinical trajectories remain poorly defined, pathogen-specific antibodies often point to immunological mechanisms of protection. Here, we profiled SARS-CoV-2-specific humoral responses in a cohort of 22 hospitalized individuals. Despite inter-individual heterogeneity, distinct antibody signatures resolved individuals with different outcomes. Although no differences in SARS-CoV-2-specific IgG levels were observed, spike-specific humoral responses were enriched among convalescent individuals, whereas functional antibody responses to the nucleocapsid were elevated in deceased individuals. Furthermore, this enriched immunodominant spike-specific antibody profile in convalescents was confirmed in a larger validation cohort. These results demonstrate that early antigen-specific and qualitative features of SARS-CoV-2-specific antibodies point to differences in disease trajectory, highlighting the potential importance of functional antigen-specific humoral immunity to guide patient care and vaccine development.


Subject(s)
Antibodies, Viral/blood , Coronavirus Infections/immunology , Coronavirus Infections/mortality , Nucleocapsid Proteins/immunology , Pneumonia, Viral/immunology , Pneumonia, Viral/mortality , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , Aged, 80 and over , Betacoronavirus/immunology , COVID-19 , Coronavirus Infections/blood , Coronavirus Nucleocapsid Proteins , Female , Humans , Immunity, Humoral/immunology , Immunoglobulin G/blood , Male , Middle Aged , Pandemics , Phosphoproteins , Pneumonia, Viral/blood , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL